A new image segmentation method based on particle swarm optimization
نویسندگان
چکیده
In this paper, a new segmentation method for images based on particle swarm optimization (PSO) is proposed. The new method is produced through combining PSO algorithm with one of region-based image segmentation methods, which is named Seeded Region Growing (SRG).The algorithm of SRG method performs a segmentation of an image with respect to a set of points known as seeds. Two problems are related with SRG method, the first one is the choice of the similarity criteria of pixels in regions and the second problem is how to select the seeds. In the proposed method, PSO algorithm tries to solve the two problems of SRG method. The similarity criteria that will be solved is the best similarity difference between the pixel intensity and the region mean value. The proposed algorithm randomly initialise each particle in the swarm to contain K seed points (each seed point contains its location and similarity difference value) and then SRG algorithm is applied to each particle. PSO technique is then applied to refine the locations and similarity difference values of the K seed points. Finally, region merging is applied to remove small regions from the segmented image.
منابع مشابه
Modified CLPSO-based fuzzy classification System: Color Image Segmentation
Fuzzy segmentation is an effective way of segmenting out objects in images containing both random noise and varying illumination. In this paper, a modified method based on the Comprehensive Learning Particle Swarm Optimization (CLPSO) is proposed for pixel classification in HSI color space by selecting a fuzzy classification system with minimum number of fuzzy rules and minimum number of incorr...
متن کاملA new Optimization-Based Image Segmentation method By Particle Swarm Optimization
This paper proposes a new multilevel thresholding method segmenting images based on particle swarm optimization (PSO). In the proposed method, the thresholding problem is treated as an optimization problem, and solved by using the principle of PSO. The algorithm of PSO is used to find the best values of thresholds that can give us an appropriate partition for a target image according to a fitne...
متن کاملAn Improved Automatic EEG Signal Segmentation Method based on Generalized Likelihood Ratio
It is often needed to label electroencephalogram (EEG) signals by segments of similar characteristics that are particularly meaningful to clinicians and for assessment by neurophysiologists. Within each segment, the signals are considered statistically stationary, usually with similar characteristics such as amplitude and/or frequency. In order to detect the segments boundaries of a signal, we ...
متن کاملMaximum Entropy for Image Segmentation based on an Adaptive Particle Swarm Optimization
Image segmentation is applied widely to image processing and object recognition. Threshold segmentation is a simple and important method in grayscale image segmentation. Information entropy can characterize the grayscale in formation of image and distinguish between the objectives and background. In this paper, we use exponential entropy instead of logarithmic entropy and propose a new multilev...
متن کاملA Novel Method for Segmentation of Remote Sensing Images based on Hybrid GA-PSO
Image segmentation is defined as the process of dividing an image into disjoint homogenous regions and it could be regarded as the fundamental step in various image processing applications. In this paper, a novel multilevel thresholding segmentation method is proposed for grouping the pixels of remote sensing (RS) images into different homogenous regions. In this way, Hybrid Genetic Algorithm-P...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Int. Arab J. Inf. Technol.
دوره 9 شماره
صفحات -
تاریخ انتشار 2012